Enzymes in a Continuous Packed Bed Reactor at Variable Pressure up to 1300 bar

Jannis Alexander Reich¹, Miriam Aßmann², Jonas Andrich², Jürgen Kuballa² Ana Malvis Romero¹, Paul Bubenheim¹, Andreas Liese¹ ¹ Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, Germany ² Galab Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany

Introduction

- High hydrostatic pressure caught interest for enhancement of reaction in biotechnology [1,2]
- Pressure as a **parameter to improve performance** of enzymes

Aim

Circular Reactor - Equilibrium

Fig. 3: Reaction scheme aldolase

Fig. 1: Reaction scheme epimerase

- Short residence time allows for kinetic measurements \bullet
- **Pressure drop of capillaries** utilized to generate high pressure in fixed bed \bullet

5 0.08

Fig 2: Scheme of the fixed bed UHPLC with reactor pump, bed, capillaries and packed back pressure regulator

To reach equilibrium long residence times are necessary

Pyr

- Pressure built up at small flow rate challenging
- Solution: circular reactor allowing arbitrary flow rates (Fig. 4)
- Position of equilibrium is measured via **equilibrium constant** *K* (independent of molar ratio of starting material)

 $K = \frac{a_P}{a_{S1}a_{S2}} \approx \frac{c_P}{c_{S1}c_{S2}} \cdot 1\frac{mol}{L}$

a_i: activity c_i: concentration

Reaction in equilibrium: change in pressure let to change in equilibrium position and constant

Fig 4: Circular High Pressure Reactor consisting of UHPLC-pump (west), fixed bed reactor (northwest), HPLC oven (northwest), capillaries (northeast), back pressure regulator (east) and vessel (south)

Fig 5: Equilibrium constant at different pressures. 39-40 °C, ManNAc / Pyr: 100 / 250 mM or 100 / 100 mM, 10 mM KPi buffer 8.00. 272.3 mg_{lmmo} / 0.71 mL, Sampling after 16 h or when no changes occurred within 1 h, dashed lines and \pm : 95 % confidence

Fig 3: 39 °C, 10 mM KPi buffer flow rate 2 mL/min 7.50. resulting in 6 s contact time, c_{F} =55.8 mg_{lmmo}/0.21 mL. At least 45 s were waited for the system to be in steady state Thin lines: 95% confidence

	1 MPa	100 MPa	Tab 1: Determined kinetic
K _M [mmol/L]	434 ± 69	209 ± 54	parameters at low and high
v _{max} [mol/L/min]	0.123 ± 0.010	0.099 ± 0.010	\pm 95 % confidence

Advantages

- Sampling at ambient pressure
- Reaction at high pressure \bullet
- Pressure can be easily adjusted by \dot{V} , back pressure regulator or more/ fewer \bullet capillaries
- Setup can easily be changed from continuous to batch production
- High flow rates in circular reactor minimize the risk of film diffusion effects and ulletresult in high exchange of vessel volume

- By applying pressure, equilibrium conversion was increased from 70 % to 88 %
- Pressure is constant over the experimental time (median average distance: 0.1 MPa)

Setup Information

- UHPLC pump Shimadzu Nexera X2
- 50 µm Capillary (length: 30 cm)
- Back pressure regulator (up to 30 MPa)
- 2 mL in vessel
- pump rate: 1.5 mL/min \Rightarrow exchange times of less then 2 min
- Similar residence time distributions for packed beds \Rightarrow beds are similar
- Sample analysis using HPLC with a Refractive Index Detector
- Fig 6: Resulting bed from sedimentation in a syringe

• Pressure can be changed for an ongoing experiment

Summary

- Changes in pressure can change the position of an equilibrium
- Volumetric changes are small \Rightarrow high pressure needed
- Reactor concept for continuously working high pressure with sampling at ambient pressure
- Influence of pressure on kinetics and reaction equilibrium found

Outlook

- Both enzymes to be investigated e.g. epimerase at equilibrium and reaction rate of aldolase, reverse reaction of the epimerase
- Combination of both enzymes in the same reactor

References

[1] Eisenmenger, M.; Reyes-De-Corcuera, J., Enzyme Microb. Technol., 2009, 5, 331-347. [2] Kara, S., Long W., Berheide, M., Peper, S., Niemeyer, B., Liese, A.; J. Biotechnol., 2011, 152(3), 87-92.

Acknowledgement We are grateful for financial support provided by BMBF(031B0405A)

Contact **Jannis Alexander Reich** Institute of Technical Biocatalysis Hamburg University of Technology jannis.alexander.reich@tuhh.de +49-40-42878-3143