Reaction Engineering Development of Biocatalytic Borylation using Cytochrome c

Jens Hennig, Ayad W. H. Dawood, Andreas Liese Hamburg University of Technology, Institute of Technical Biocatalysis, Germany

Introduction

Organoboron compounds:

Kinetic Characterization

Recording and fitting of Michaelis-Menten kinetics:

Non-competitive substrate inhibition by

NHCB observed

No inhibition by DAC observed 25 °C fit • Highest activity at 40 °C

H⁺-donor, strong electrophile \rightarrow versatile platform chemical **Properties:**

Applications: Polymerization, catalysts antioxidants, fuel additives, antibiotics **Chemical synthesis:** Hydroboration, borylation, Grignard reaction

Limitations of conventional synthesis:

- Low regioselectivity
- Catalysts total turnover number (TTN) < 100
- Environmentally offensive synthesis

Novel approach: Biocatalytic Organoborane Synthesis:

- Cytochrome c (Cytc) driven whole cell biotransformation [1]
- Sustainable and reusable [2]
- Higher TTN compared to chemo catalysts [1]
- Highly enantioselective [1]

Challenges of the biocatalytic reaction system:

- Undetermined kinetic reaction parameters
- Only approved in analytic and milligram scale
- Cytochrome c is sensitive to oxygen
- Carbene binding to haem c can cause deactivation

Objectives

•	nignesi	activity	al 40	C

Tab. 1: Numerically fitted kinetic Michaelis-Menten parameter based on experimental data.

Parameter	25 °C		35 °C		40 °C	
v _{max} [U/mg]	26.4	± 20.0	23.8	± 15.4	24.1	± 15.6
K _{m,NHCB} [mM]	19.4	± 16.2	6.6	± 5.8	6.4	± 5.80
K _{m,DAC} [mM]	2.2	± 0.3	3.1	± 0.8	1.1	± 0.5
K _{i,NHCB} [mM]	1.5	± 1.3	5.7	± 5.1	6.2	± 5.6

Fig. 3: Michaelis-Menten curves and their numerically fitted progressions for NHCB (top) and DAC (bottom) for biocatalytic borylation, catalysed by *Rma* cytc BOR^{R1} harboured in *E. coli* BL21 DE3.

Fig. 4: Cytc activities for different OB concentrations and various incubation times with DAC and NHCB, to identify possible irreversible inhibitions.

- No NHCB-induced deactivation
- DAC-induced deactivation: $K_{dea} = 0.18 \text{ min}^{-1}$
- No product inhibition \bullet

Identification of influencing parameters and			
collection of experimental data			
Parameter fitting and reaction simulation			
Reactor type and operation mode selection			

Improvement of enzymatic performance from an reaction engineering point of view to bring biocatalytic borylation to an industrial relevant alternative. [3]

Biocatalytic Organoborane Synthesis

Biocatalytic borylation model reaction:

Fig. 1: Reaction scheme of organoborane synthesis in *E. coli* BOR^{R1}. NHC-borane (NHCB) and Ethyl-2-diazopropanoate (DAC) are used as substrates to form the organoborane (OB).

Model-based simulation of organoborane synthesis:

OB-synthesis in fed-batch mode:

■ 100 µL/min ■ Batch

- Lowered feed reduces OB-synthesis
- Minimized reaction rate due to lower substrate concentration

Fig. 6: Investigation of different feed rates on Cytc-specific OB synthesis.

Summary

- Expression of *Rma* cyt c BOR^{R1} in *E. coli* BL21 DE3

Experimental setup:

- Thermostated reactor vessel ($V_{reactor} = 10 \text{ mL}$)
- Enables fast and accurate sampling
- Simultaneous operation of 3 reactors \bullet

Fig. 2: Improved experimental thermostated reactor-based setup.

- Numerical fitting of kinetic constants V_{max}, K_{m,NHCB}, K_{m,DAC}, K_{i,NHCB}
- Simulation of reaction progress based on kinetic model
- Initial fed-batch experiments carried out

Fig. 7: Enzymatically synthesized organoborane product.

- Further investigation of fed-batch and continuous operation modes
- Evaluation of different reactor types
- Immobilization of Cytc on different carriers

References:

[1] J. Kan, X. Huang, Y. Gumulya, K. Chen, F.H. Arnold: Nature, No.552, 132-136, 2017. [2] L. Hilterhaus, A. Liese, U. Kettling, G. Antranikian: Wiley-VCH, 2016, 464 S., ISBN 978-3-527-33669-2.

[3] A. Liese, L. Hilterhaus: Chemical Society Reviews, No. 42, 6236-6249, 2013.

Acknowledgement:

■5 µL/min

We are grateful to the California Institute of Technology and Prof. Frances Arnold for providing us with the genetically engineered cytochrome c variant Rma cyt c BOR^{R1}.

Contact: Jens Hennig Institute of Technical Biocatalysis Hamburg University of Technology Denickestr. 15; 21073 Hamburg Tel: +49-40-42878-2205 Email: jens.hennig@tuhh.de