Implementing Quality by Design in biomanufacturing with the QUBICON® software

Koczka, K.; Sommeregger, W.; Berghammer, G.

Bilfinger Industrietechnik Salzburg GmbH, Vienna, Austria

Software Functionality Over	/iew		
Data management and processing	Advanced process control	Data visualization	

Real-time monitoring

Process models

Process comparison

Figure 1. Qubicon[®] – the all-in-one software solution – stands for better product quality in biomanufacturing. Its key functionalities such as real-time monitoring and user-defined, in-process (model-based) control adjustments to performance deviations contribute to the reduction of product quality non-conformities. The versatile applicability of the software for better performing and cost-optimized processes is proven by diverse examples in the field of biomanufacturing – both in the area of Upstream Processing (USP) as well as in Downstream Processing (DSP).

Adaptive Feed Control

Common feeding practices in the industry to keep the nutrient levels constant during a cultivation can have major weaknesses. However, Qubicon[®] offers a solution by realizing adaptive feed control.

Figure 2. A recombinant antihTNF-α IgG1 producing CHO-K1 cell line was cultivated in fed-batch mode with a glucose setpoint of 4.5 g/L. Glucose concentration was controlled via glucose uptake estimation based on the oxygen uptake rate (OUR). The bioreactor, the feed scale and pump were

PA, DO, T, CO_2 ,

agitation

Glucose added

Feed

Model-Based Protein Refolding

OUR

Glucose

consumed

Glucose

concentration

Scale setpoint

Figure 3: Feedback control of the glucose concentration was based on the OUR calculation via a dynamic $k_{L}a$ model¹. Input variables are shown in light-blue, whereas the soft-sensor calculations are presented in dark blue. As output variable the necessary amount of feed was calculated and sent as a setpoint to the respective pump.

Figure 5. Towards enhanced monitoring and control of refolding processes.

Implementing the M³C approach to refolding²

- Application of advanced process analytics
- Time-resolved analysis of refolding dynamics
- Model-based capture of process knowledge
- Deployment of predictive control strategies via Digital Twins
- Investigation of scalability and necessary model adaptations

Figure 6. Schematic overview of the integrated platform approach for model-based monitoring and control of a protein refolding process with Qubicon[®].

Digital Twin

Figure 4. Graph presenting the feed rate (blue) and the offline measured glucose concentration (red). As a result of the adaptive feed control, the glucose level remained constant, in a tight range throughout fed-batch phase (after day 4).

Interaction of the process model with the refolding process

CHASE

- Description and estimation of refolding kinetics
- Optimal control of refolding yield and space-time-yield by controlled addition of solubilized protein using model predictive control

¹ Pappenreiter et al., 2019. Oxygen Uptake Rate Soft-Sensing via Dynamic kLa Computation: Cell Volume and Metabolic Transition Prediction in Mammalian Bioprocesses. Front. Bioeng. Biotechnol. 2019; 7(195). ² Pauk et al., 2021. Advances in monitoring and control of refolding kinetics combining PAT and modeling. Appl. Microbiol. Biotechnol. 2021;105(6):2243-2260.

Bilfinger Industrietechnik Salzburg GmbH Mooslackengasse 17 1190 Vienna, Austria qubicon.salzburg@bilfinger.com

www.qubicon.at