

Electrochemical formate production sustainable feedstock from CO₂ for biotechnological processes

M. Stöckl¹, M. Pfitzer², F. Meisel², N. D. Kalamarski², D. Holtmann² | markus.stoeckl@dechema.de ¹DECHEMA-Forschungsinstitut, Frankfurt a.M./D; ² TH Mittelhessen University of Applied Sciences, Gießen/D

CO₂ electrolysis to formate

Formate as feedstock for biotechnological processes

bioproducts

2

Electrochemical formate production

- CO₂ electrolysis in a self designed electrolysis reactor
- Application Sn-based gas-diffusion electrodes (GDE)

Fig. 1: photographs of Sn-based GDE. A:

Fig. 2: scheme of designed electrolysis

Formate as feedstock for bioproduction

- Cupriavidus necator as formatotrophic model organism
- Gram-negativ, facultativ chemolithoautoprophic β-Proteobacterium

Biomass production with C. necator wild type

- Growth in parallelized cultivation system (DASGIP[®])
- Continuous feed with 1 M formate containing phosphate buffer

PTFE covered gas-site. B: electrolyte-site

Electrolysis parameters:

Electrolyte flow rate: 20 mL/min $\frac{1}{200}$ Electrolyte: 200 mM PO₄³⁻buffer $\frac{1}{100}$ CO₂ pressure: 40 mbar 50Current density: -50 mA/cm² 0Temperature: 35°C Duration: 240/420 min (Fig.3/4)

- Linear formate production over time
- Stable long-term operability with slightly decreasing performance over time
- Maximum formate concentration of 400 mM was achieved

reactor for CO₂ reduction.

80 70 🛞 60 efficiency **E** 250 50 40 150 idi 30 **5** 100 201010 average concentration ---- average efficiency 120 240 60 180 time (min) Fig. 3: Formate production from CO₂ and coulombic efficiency (n=3).

450 60 400 50 (%)
40 30
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40
30 40 (F) 350 300 **2**50 **9** 200 nbic **E** 150 20 **9** 100 Coul formate concentration 10 Coulombic efficiency 200 100 300 500 time (min) **Development of performance** Fig.

- 25 % of formate from electrolysis origin
- Production of up to 0.6 g biomass (1 g/L) on formate
- Dilution effect (not shown) due to relatively low feed concentration

Fig. 5: Development of total biomass of *C. necator* with formate feed in paralyzed bioreactors

Isopropanol synthesis with *C. necator* Re2133/pEG7c

- Incubation of resting cells in septum-flasks on NH₄⁺-free medium containing 80 mM formate originating from CO₂ electrolysis
- Complete formate consumption by resting cells
- Increasing isopropanol concentration up to 0.36 mM
- No further isopropanol synthesis due to substrate limitation

5

Fig. 6: Development of formate and isopropanol concentrations with *C. necator* Re2133/pEG7c resting cells

Conclusions and outlook

- Formate was produced from CO₂ with Sn-based GDE.
- Stable formate production process over time with coulombic efficiencies as (CE) high as 60 %.
- With increasing electrolysis duration and increasing formate concentration CE was slightly decreased.
- Formate originating from CO₂ electrolysis was successfully employed as feed in a parallelized bioreactor. To prevent dilution, higher feed concentrations from electrolysis are required.
- Isopropanol synthesis on formate has been shown with a resting cells in principle.
- However, the product to substrate ratio clearly indicates that an optimization of the metabolic pathways for formate usage is needed.

Acknowledgement

We gratefully acknowledge financial support by German Federal Ministry of Education and Research:

number 031B0523

number 031B0851D

Federal Ministry of Education and Research

6