
HaloTag® immobilization of novel a-ketoacid-dependent dioxygenases increases initial rate activity and process stability Seide, Selina¹, Pohl, Martina¹ Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425 Jülich, Germany¹

The **reaction**

CpKDO: a-ketoacid dependent dioxygenase from Chitinophaga pinensis FjKDO: a-ketoacid dependent dioxygenase from Flavobacterium johnsoniae CaKDO: a-ketoacid dependent dioxygenase from Catenulispora acidiphila

- insertion of an oxygen atom in non-activated C-H bond in the absence of harmful oxidizing agents is chemically challenging
 - novel α -ketoacid dependent dioxygenases (KDOs) catalyze the stereoselective hydroxylation of amino acids^{1–3}
 - L-lysine derivatives hydroxylated in 3- and 4position find versatile application as chiral building block for active pharmaceutical ingredients

The catalyst

a-ketoacid-dependent dioxygenases

s.seide@fz-juelich.de

cofactor reducing ag cosubstrate side reactio reaction mechanism

	Fe ²⁺
gent	L-ascorbic acid
;	a-ketoacid
on	a-ketoacid to succinate
	hydroxylation
า	dioxygen activation (O_2 dependent)

JÜLICH

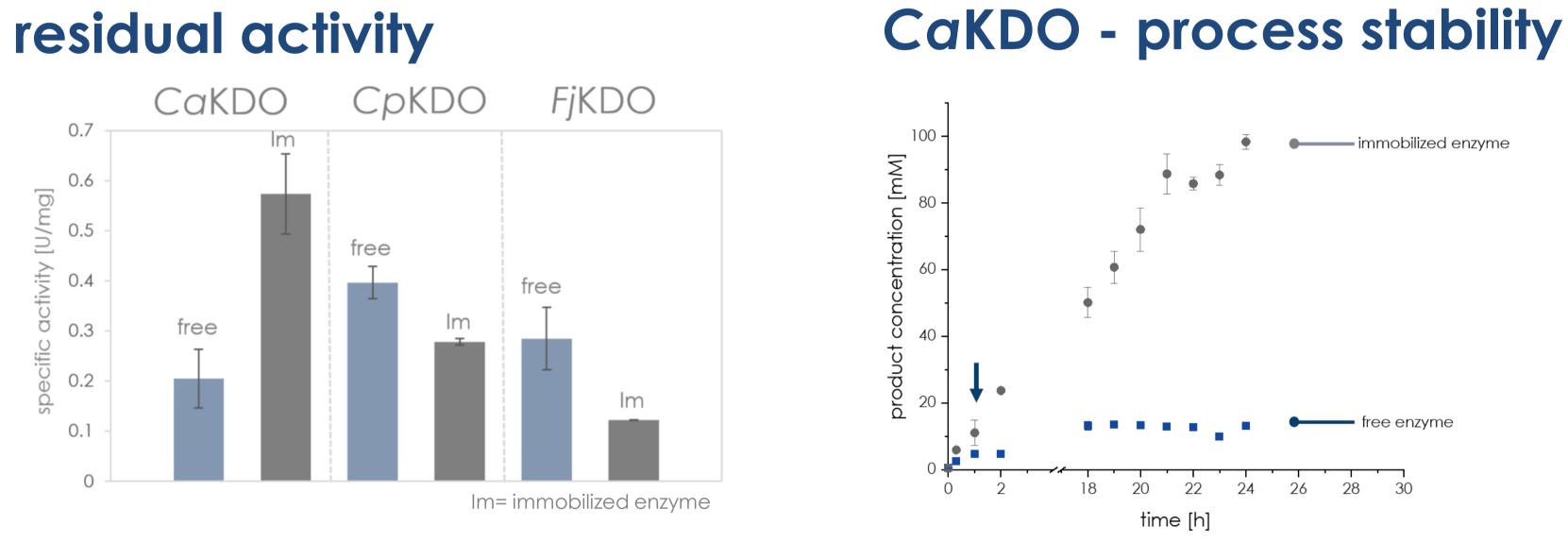
Forschungszentrum

The challenge

The solution: HaloTag® immobilization

• mutated dehalogenase fused to target enzyme via linker^{4,5}

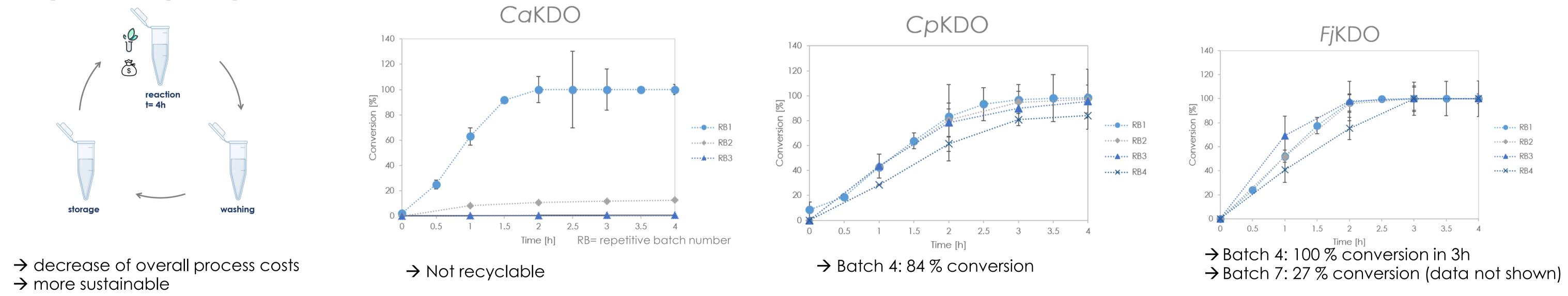
- loss of activity
- loss of iron in active site
- precipitation during purification
- \rightarrow purification with constant supply of iron (II), reducing agent and cosubstrate increases stability


 \rightarrow laborious and expensive

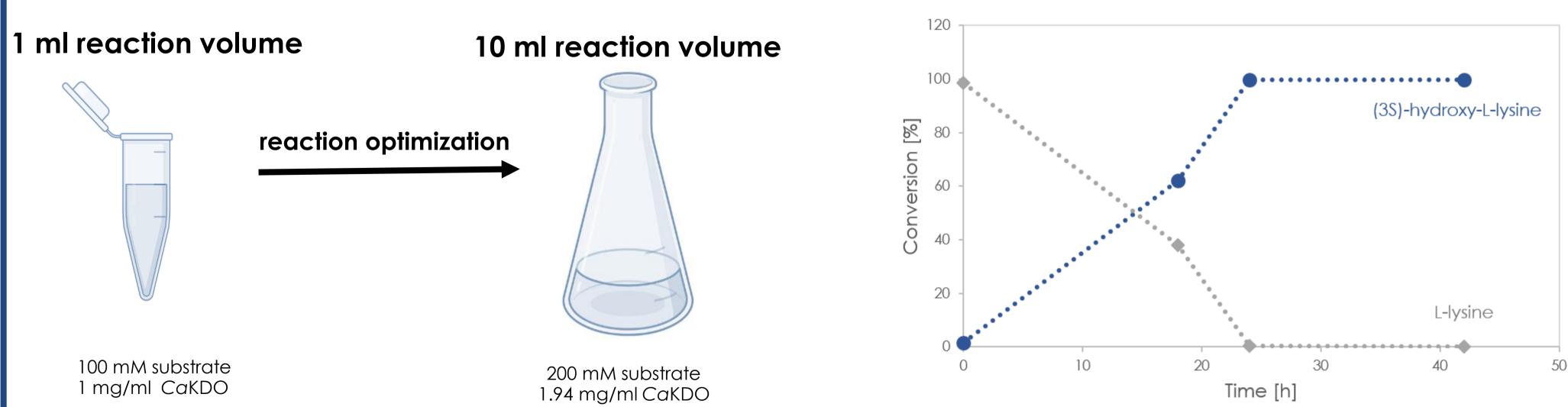
precipitated and inactive CpKDO after metal affinity chromatography in TRIS buffer

• commercially available carriers: sepharose & magnetic beads

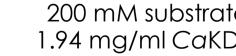
Site-specific covalent immobilization no enzyme leaking immobilization from cell-free extract high residual activity


The results

100 mM L-lysine, 750 rpm, 0.5 mg/ml – 1 mg/ml catalyst 200 mM HEPES, 1 ml reaction volume, measured by HPLC analytics, data from two independent reactions


- CaKDO: immobilization increases specific activity and process stability
- CpKDO: 70 % residual activity, good process stability with free and immobilized enzyme
- **FjKDO:** 32 % residual activity, good process stability with free and immobilized enzyme

recyclability- repetitive batch studies


100 mM L-lysine, overhead shaker, 5 mg/ml immobilized KDO, 200 mM HEPES, 1 ml reaction volume, measured by HPLC analytics, data from two independent reactions. Immobilized catalyst was washed and stores at 4°C in-between batches.

preparative lab scale - CaKDO

CaKDO

 \rightarrow Upon immobilization and reaction optimization 200 mM conversion in 42 h possible with moderate enzyme concentration

200 mM L-lysine, 200 mM HEPES, 150 rpm, 1.94 mg/ml CaKDO, 10 ml total volume, measured by HPLC analytics, single measurement

references

acknowledgement

Kompetenzzentrum Biotechnologie).

This project is financially supported by the "EFRE.NRW" and the

"European Union" in context of the research group CKB (CLIB-

- 1. Baud, D. et al. Biocatalytic Approaches towards the Synthesis of Chiral Amino Alcohols from Lysine: Cascade Reactions Combining alpha-Keto Acid Oxygenase Hydroxylation with Pyridoxal Phosphate Dependent Decarboxylation. Adv. Synth. Catal. 359, 1563–1569 (2017).
- 2. Baud, D. et al. Synthesis of Mono- and Dihydroxylated Amino Acids with New a-Ketoglutarate-Dependent Dioxygenases: Biocatalytic Oxidation of CH Bonds. ChemCatChem 6, 3012-3017 (2014).
- 3. Hara, R. et al. Discovery of Lysine Hydroxylases in the Clavaminic Acid Synthase-Like Superfamily for Efficient Hydroxylysine Bioproduction. Appl. Environ. Microbiol. 83, 1–14 (2017).
- 4. Encell, L. P. Development of a Dehalogenase-Based Protein Fusion Tag Capable of Rapid, Selective and Covalent Attachment to Customizable Ligands. Current Chemical Genomics, 6(1), 55–71 (2013).
- 5. Döbber, J., & Pohl, M. HaloTagTM: Evaluation of a covalent one-step immobilization for biocatalysis. Journal of Biotechnology, 241, 170–174 (2017)

Member of the Helmholtz Association

EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung