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Gene editing, cloning or mutagenesis techniques can deliver large numbers of candidate strains from which high-performers must be identified.
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Such strain collections can easily saturate the throughput of cultivation and characterization techniques, in particular those with fine process control and
production scale comparability. It is therefore desireable to characterize high-performers well, without wasting experimental resources on under-
performing strains. This task of exploiting high-performing candidates while minimizing the resources spent on under-performers is a prime
example for the application of Bayesian optimization techniques.

On this poster we present how probabilistic generative models of automated microbioreactor (MBR) processes can be combined with the

Thompson sampling algorithm to characterize high-performing strains from a mutagenesis collection in few rounds of experimentation.

rerequisites

experimental

Collection of histidine-producing Corynebacterium glutamicum
« 96 mutant strains provided by SenseUP Biotechnology GmbH

» Growth-coupled product formation

 Productivity unknown beforehand

calibration

Needed to translate between...

» BioLector backscatter vs. biomass conc.
* 365 nm absorbance vs. substrate conc.
« 570 nm absorbance vs. product conc.

process model

Mechanistic bioprocess model

* Monod-like differential equations (ODE)

» Growth-coupled product formation

« Screening metric predicted by model
under standardized conditions
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» Need empirical model of measurement uncertainty
» Built Python package calibr8 for calibration modeling
» Enables probabilistic machine learning with real data
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MBR Batch

Dataset grows by 48 replicates every round

Bayesian Inference
6
» Aggregate data from all previous batches ’
» Fit new calibration models
~ » Build ODE models for all replicates
» Multi-replicate modeling with murefi

- process model -
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» Diagnostic checks and plots ‘ murefi model ‘
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Robotic Inoculation from cryos based 96X
on Al-generated experiment design
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@ » Predict screening metric under standardized conditions
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Thompson Sampling

Model predicts with high
uncertainty for yet
unobserved strains.

Conclusions

Bayesian optimization characterizes top-performers
with more replicates in fewer experiments.

Replicates for the next round
are randomly selected
according to their probability
of being the best performer.

high-performer

« Human subjectivity in picking candidates for

subsequent characterization was removed.
Few replicates are not

enough to distinguish top

p Thorough quantification of experimental uncertainty
performers.

enables process modeling with big data sets.

After 5 rounds, the top
performers were cultivated
~10x more often.

« Generative process modeling delivers predictions

. . low-performer
of relevant screening metrics.

Our Python packages calibr8 + murefi enable
« modelers to scale ODE process models across
many replicates and experiments.

Few experimental resources
were wasted on low-
performers.
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