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presented that analyses multiple cultivation datasets based on the two hypotheses: first, < ﬁ[ PCHIP ] (%)
stationary cellular phenotypic behavior can be described as a vector consisting of specific rates;
second, similar vectors can be clustered as a representative phenotypic group surrounding a Gp = (L Toma Tozs e To=m)' |
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As a field of unsupervised learning, clustering can be utilized as a potent tool that can pinpoint
different types of phenotypic behavior as clusters. Conditional triggers of specific phenotypes as
well as differentiation of cellular behaviors can be outlined. For its demonstration, fermentation
data of Clostridium pasteurianum strains were used.
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The used fermentation data were generated from 44 small scale cultivations (= 50 mL) and 46 K_m'e(:rize gsarce 1]
controlled fermentation processes (< 3 L) of different C. pasteurianum strains. MATLAB 2020b ‘ ’[ clustering ]
was used for the calculative process (Fig. 1). Briefly, cultivation data were used to interpolate S Centroids representing the
iInter-sample data points via Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). After H@@E%—%,‘:%; ; cluster behavior
estimation of the time-derivatives of concentration data, specific consumption or production rates &;** “Iiiiﬁ g G, O %cé)()ooo
were calculated. Followed by outlier removal (1.6 percentiles), the number of clusters were lH”E%%Ei:tE%E Q}O OOQ)O o :
estimated using the silhouette evaluation with cosine distance metric and z-score normalization. | 2 =+s+se sxe O QOQOOQD 1
The resulting clusters were calculated as medians from clustered data. wEdTETEL e % )

Results Fig. 1: Data preparation and clustering.

For the demonstrated case, 14 clusters as characteristic phenotypes were found (Fig. 2). Analysis of conditionality of phenotypic manifestations
showed potential trends (e.g. initial FeSO,-7H,O concentration) or unique factors (e.g. distribution of strains for a specific cluster).
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Cultivation condition data for specific clusters (initially, not included as input data for cluster formation algorithm) Distribution of the different strains in specific clusters (initially, not included as input data for cluster formation algorithm)
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Fig. 2: Found phenotypic clusters and potential conditional triggers.

Discussion and Conclusion
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High dimensionality of the datasets coupled to heterogeneity of vector densities leads to |23 i: P oo g 8
. . . . S O 0'5_: i/' 1 -_0_4 g
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Characteristic phenotypical behavior In 14 different clusters were captured. However, data e :
treatment and clustering parameter optimization are required for distinction between characteristic e =
behavior and data noise. Potential cause and effect relations can be analyzed via inclusion of | &3 _%
additional information that was not used for clustering. — ¥
Besides from analysis for conditional triggers, superposition of the identified clusters can be used Time [f ORP-controlled steady state condtions [mV]
to analyze cultivation process (here calculated as nonnegative linear least-squares problem). Fig. 3: Superposition-based analysis.
Dynamic shifts of predominant clusters or shifts of superposition-based cluster distribution for
different steady state conditions (e.g. ORP control via anodic BES) can be used as additional tool Cof“aCtYaeseong onc. ot An-Ping Zen:
to capture minor differences (Fig. 3). Further tuning and optimization is currently in progress. s 10 (0 496 78 4101 ¢ A g e
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